RFID may track, safeguard global blood supply

University researchers looking to use technology to safely track supplies vein-to-vein

The global blood supply — going vein-to-vein, from donor to warehouse to hospital to patient — is tough to track. And tracking problems are part of the reason that thousands of bags of critically needed blood are thrown out every day.

Researchers at the University of Wisconsin-Madison are hoping to use radio-frequency identification (RFID) technology to create a way to better track blood supplies around the world. That, according to Alfonso Gutierrez, RFID lab director at the university, could lead to better handling and fewer instances of patients receiving the wrong blood.

The UW-Madison RFID Lab, which is part of the university's College of Engineering, has partnered with three national blood centers to develop prototypes for using RFID to manage the entire supply chain in blood transfusion medicine. Gutierrez said the team already has completed studies about the safety and economic benefits and now is testing a prototype RFID system to identify, track and monitor the condition of blood products.

Gutierrez noted that the research team just finished testing the technology to prove to the U.S. Food and Drug Administration (FDA)  that the radiation emitted by the RFID readers would not harm the blood. "Radio frequency is, in itself, radiation," he explained. "It's basically waves. Any waves, in principle, is radiation. We're used to thinking of high-frequency radiation like x-rays or microwaves. The frequency we are using is much lower. No matter how low, the FDA requires proof of its safety."

The project is being funded by a small grant from the National Institutes of Health  and by companies in various segments of the blood industry, such as blood bag manufacturers.

A 2005 U.S. Department of Health and Human Services study of 1,322 national medical treatment centers found that more than 32,000 reports of transfusion-related adverse reactions in 2004. There are an estimated 25 million transfusions performed in the U.S. each year.

"What we're creating is a layer of safety redundancy," Gutierrez told Computerworld. "RFID, in coordination with the bar codes that are used today, is going to increase safety and increase efficiency. And by doing a better job of tracking the blood, we're increasing quality. When a product is not well managed, it ends up being discarded. If it outlasts its shelf life, it needs to be discarded and that happens many, many thousands of times a day."

Gutierrez noted that the first RFID pilot program should begin in the U.S. in about a year. He hopes the program will be officially rolled out in the U.S. and around the world in two to three years.

RFID is an automatic technology — consisting of a small chip and an antenna — that acts as a unique identifier.

Part of the challenge of tracking the donated blood is the number of hands and locations it passes through. First the blood is donated, and then it's shipped to a facility where it's tested. And then different components, like platelets and plasma, are extracted and repacked. Then it's shipped to regional blood centers or hospitals, where it's then sent to operating rooms, emergency rooms and intensive care units.

"People don't realize but blood is a prescribed medication and has to be treated like a drug," said Gutierrez. "Every bag has an [RFID] tag. Every time it's split into red blood cells or plasma, there's a transferring of data onto the next tag, so you can track it all the way back to the donation ID. That ID travels with the blood bag all the way to the patient. The whole idea is not only tracking, but [the tag] has information about attributes about the blood, like blood type and expiration date."

Copyright © 2008 IDG Communications, Inc.

7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon