The lost NASA tapes: Restoring lunar images after 40 years in the vault

A Mac Pro and 40-year-old tape drives are helping restore the original Lunar Orbiter tapes

1 2 3 4 5 Page 3
Page 3 of 5

With an additional $600,000 budget, Wingo hopes to have all the files processed by February, producing a moon atlas with a resolution higher than anything previously seen. Most of this new funding is again from NASA, with about 10% from private donors.

However, Wingo's "deliverable" to NASA is not the images themselves, but the raw data extracted from the tapes. "They would rather have the raw data so that someone even a thousand years from now could do their own processing," he says.

The lost Apollo 11 tapes

The NASA edict against data destruction was issued after the space agency's 2006 admission that it couldn't locate the original tapes of the Apollo 11 live slow-scan TV broadcast from the moon. The agency then initiated a search for the tapes, which remains ongoing, as is the Internet furor the admission generated among conspiracy theorists, who believe the landings were staged.

The data is assumed to be on 1-in. tapes, but, based on period photos, Wingo thinks they should be on 2-in. tapes like the Lunar Orbiter data. He is conducting his own search.

Begging to differ is Richard Nafzger, senior engineer at the Goddard Space Flight Center in Greenbelt, Md., who's been working for NASA since 1968 and was involved in television support and voice communications for the Apollo moon missions.

Lunar side-by-side
Orbiter image from 1966, and, below, after modern processing of the original data.

"Despite how old you get, there are certain things you don't forget, and we recorded all slow-scan images on 1-in. tapes that were 15 in. in diameter, and I have spent the last three years tracking them," he says. "I am certain that there was no slow-scan ever recorded on the Ampex 900." The video feed was one of 12 tracks of telemetry that were recorded on each tape, Nafzger explains.

Due to the low wattage of the transmitter on the lunar lander, they had only 500 kHz bandwidth to use for video, as opposed to the 4.5 MHz that was standard at the time for broadcast analog TV. So NASA used a slow-scan, black-and-white transmission at 10 frames per second with 320 lines per screen, Nafzger says. U.S. broadcast TV used 30 frames per second with 525 lines per screen. The conversion was made at each ground site with a device that basically pointed a broadcast TV camera at a special monitor displaying the slow-scan image.

1 2 3 4 5 Page 3
Page 3 of 5
7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon