Lithium-ion: The next big thing for car batteries?

Costs are high and lithium supplies are not plentiful

Any mention of using lithium-ion in cars triggers negative reactions in some quarters. The current cost for li-ion is about $1,300 per kilowatt-hour capacity. A car such as the upcoming Chevrolet Volt electric hybrid requires a 16 kilowatt-hour battery, meaning its battery would cost almost $21,000 -- more than many cars.

As for volume production bringing prices down, don't bet on it, cautions John Petersen, partner with investment firm of Fefer Petersen & Cie in Château de Barberêche, Switzerland. The lithium used in li-ion batteries comes from salt flats in the Andes Mountains of South America, and the supply cannot automatically be expanded to meet higher demand. An aluminum ore available in the U.S., called spodumene contains lithium -- but extracting it is expensive since lithium will explode on contact with water, Petersen explains.

Ross Dueber, president and CEO of ZPower, a battery startup in Camarillo, Calif., agrees, saying that 60% to 70% of the cost of a lithium-ion battery is from the cost of the raw materials. "Bolivia is the Saudi Arabia of lithium-ion. The idea that the car industry will be able to bring costs down is optimistic, since we have already done that in the electronics industry. We already have a huge installed base and we already leverage from volume. If we could make it cheaper, we would've done so."

The iconic American electric car is the previously mentioned Chevrolet Volt, which should go on the market by the end of calendar 2010, according to General Motors spokesman Brian Corbett. It will use manganese li-ion batteries supplied by a South Korean company, which are expected to last 8 to 10 years, or 150,000 miles. He would not give an expected cost for the batteries because he said the batteries are not to be sold separately -- they will be part of the car. (The retail price of the car has also not been announced.)

The use of manganese means the battery can supply bursts of power suitable for a car, and does not impact the price of the battery -- around $21,000 -- so there is some question about how the Volt can be competitively priced.

Battery management circuitry will prevent both excessive charging and discharging, to prolong battery life, he says.

The vehicle is expected to go 40 miles on a battery charge, and has a small gasoline engine and a generator to extend the range beyond that. Recharging will take three hours at 220 volts and eight hours at 110 volts. A "thermal management system" will prevent the battery from getting too hot or too cold, Corbett explains.

Lead-acid battery technology also continues to improve, says Maurice "Moe" Desmarais, executive vice president of the Battery Council International in Chicago. "Vendors continue to release new products that contain more energy and have longer life spans than previous products, so the technology is improving in all respects. The problem is that you have to do several years of testing -- if you are offering a warranty for four years, you need to test it for four years."

Also, the mounds of lead-acid car batteries that used to disfigure junkyards are now gone, and currently recycling rates hover at 99% as the lead in the batteries can be completely reused, Desmarais says. In fact, he notes that municipal garbage workers are generally forbidden to collect car batteries. Currently, car batteries typically last four years but hot weather can decrease their life expectancy, Desmarais says.

Next: "Rechargeable batteries: Small advances rather than large strides"

Copyright © 2009 IDG Communications, Inc.

7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon