Rechargeable batteries: Small advances rather than large strides

There's no 'silver bullet' technology on the horizon that will dramatically improve battery life

You can pretty well bank on next year's new computer being significantly more powerful than this year's. But if it's a laptop, that won't be the case for the rechargeable batteries that run it.

Unlike processors, which tend to double in power every other year, battery power has been doubling about every other decade -- and there is some question as to whether even that pace can be maintained.

First, some basics: The rechargeable battery chemistries that have been used in portable devices so far include lithium-ion (li-ion), nickel-metal hydride (NiMH), nickel-cadmium (NiCad) and, if you count cars, lead-acid. Potential battery power, meanwhile, is usually rated in terms of watt-hours per kilogram. Sealed lead-acid batteries can deliver 30 to 50 watt-hours per kilogram, NiCad can deliver 45 to 80, NiMH can deliver 60 to 120, and li-ion can reach as high as 180, according to a site run by Isidor Buchmann, founder and CEO of Cadex Electronics, a maker of battery test equipment and chargers in Vancouver, BC.

For obvious reasons, therefore, the portable electronics market has largely converted to li-ion chemistry. And given the slow rate of change, li-on is likely to remain the battery of choice for laptops and cell phones for the next three to five years -- but things get complicated from there.

Lithium-ion batteries

Since it was commercialized by Sony in 1991, the power of lithium-ion battery technology "has roughly doubled," Buchmann says. He goes on to explain that, typically, lithium-ion technology has been getting 3% to 4% better per year for the last several years.

This has happened mostly by making the packaging more efficient and by using thinner separators between the layers of reactive materials, explains Ross Dueber, president and CEO of ZPower, a battery startup in Camarillo, Calif.

But, he warns, "Without any move to a new chemistry there will be no dramatic improvements from here."

Buchmann and Dueber agree that thinner separators were the source of the laptop battery fires that have made headlines in the past few years. Numerous recalls were made by Dell and Apple, among other vendors, including the most recent one from Sony in October 2008. The U.S. Consumer Product Safety Commission lists more than a dozen recalls for laptop batteries since 1994 (search under 'computer equipment'). A li-ion battery fire was also blamed for wrecking a U.S. Navy mini-sub in November 2008. (No one was aboard the sub at the time, and there were no injuries reported.)

Beyond safety, which observers agree has been addressed with stringent quality assurance programs by the manufacturers, li-ion also has a problem with longevity. As anyone who has ever owned a laptop knows, the batteries degrade after repeated charge-discharge cycles.

That, however, may change.

"I believe we are on the onset of a second generation of lithium-ion battery technology," says Christina Lampe-Onnerud, CEO and co-founder of Boston-Power Inc., a li-ion battery startup in Westboro, Mass. The second generation will involve batteries that offer stable levels of power over their usable lives, she indicated. Her company's second-generation laptop batteries began shipping last December and are being offered by Hewlett-Packard.

The promise of the new batteries is this: If a vendor says the batteries "will power a laptop for four hours, the second generation will deliver consistently four hours," she says. "Maybe that will be four hours 20 minutes at first, and three hours 50 minutes after four years -- but not one and a half hours after six months."

She said that the trick is to optimize the battery for how a laptop works. Her firm has invented a new cathode (i.e., the positive electrode -- see illustration, below) that uses both manganese and cobalt, an aluminum enclosure instead of stainless steel for better heat dissipation, plus new safety systems, fuses and vents. She added that the new design involves 61 patents.

Buchmann explains that there are actually multiple varieties of li-ion batteries involving cobalt, phosphate or manganese in the reactive material. Cobalt is used in batteries for cell phones and laptops, as it can supply high energy at a steady pace. However, it cannot deliver bursts of power, such as a power tool or car might want. Phosphate and manganese are used in those applications, and offer energy densities as much as a third lower, but there is assumed to be room for improvement there, he notes.

Lithium-ion battery
Lithium-ion batteries consist of a positive terminal (the cathode) and a negative terminal (the anode) and the electrolyte material. The anode and cathode material are wrapped around each other but kept out of contact by a thin separator, whose failure has been known to trigger fires. Source: General Motors

The other rechargeables

NiCad (nickel-cadmium) batteries were the first practical rechargeable battery technology for portable electronics, and are cheaper to make than NiMH (nickel-metal hydride) batteries. But the technology has been largely abandoned due to environmental concerns because of the cadmium they contain, says Norman Deschamps, an analyst for the market research firm SBI in Moncton, New Brunswick. NiCad batteries can still be found in space and telecommunications applications, he notes.

In portable electronics, NiMH batteries are mostly found in inexpensive cordless phones, says ZPower's Dueber, because NiMH batteries can use cheaper charging and protection circuits than li-ion batteries.

John Petersen, partner with investment firm of Fefer Petersen & Cie in Château de Barberêche, Switzerland,notes that NiMH technology is constrained by the supply of lanthanum, a rare-earth element required to make the batteries, almost all of which currently comes from China. "Otherwise, it's good technology with solid performance," he says. However, given the lanthanum shortage, he does not expect it to make any additional inroads against li-on in portable electronics.

Meanwhile, "There has been a lot of hype about li-ion in vehicles, but 98 percent of hybrids use NiMH," adds Deschamps. "It is better in terms of the temperature in which it can be charged. All but the newest li-ion batteries can't be charged below zero degrees Centigrade. That's not an issue with laptops but it's a real problem with vehicles. You'll notice that hybrids are most popular in the Southwest; where the weather is easier on the batteries." NiMH batteries also haven't started any fires, he added. (For more about car batteries, see this related story.)

Next: Silver-zinc?

Dueber disagrees that battery technology has reached a plateau, as his firm is currently commercializing batteries based on silver-zinc chemistry. He expects to see sales start next year.

"In theory it has about twice the density as lithium-ion, and in practice we are looking at a 40 percent improvement, or about 250 watt-hours per kilogram," he says. The silver is recoverable -- it can be melted down and recast in a new battery after the original wears out -- as is the zinc, "which is fairly cheap, so we expect recycling to keep the price down," he explains.

He expects retail prices for silver-zinc to be 40% higher than li-ion, or about $1,800 per kilowatt-hour capacity, but he notes that silver and zinc are plentiful compared to lithium, so mass production would not encounter any shortages. Also, the components are not flammable.

"We think there is a lot of runway for improvement with silver-zinc chemistry, much greater than li-ion has in its future, with a theoretical limit of 524 watt-hours per kilogram," Dueber says. There have even been unconfirmed reports of Apple switching to silver-zinc for the battery in its 17-inch MacBook Pro.


The main alternative to batteries is fuel cells -- instead of recharging, you add more fuel, which is typically methanol, some form of natural gas, hydrogen, or borohydride (boron and hydrogen).

"The most significant development in the last three years has been the increasing number of commercial sales" of fuel cells, said Robert Wichert, technical director of the US Fuel Cell Council in Washington, DC. Fuel cells are popular with emergency services -- in other words, rescue teams that are sent into devastated areas where there is no reliable power supply, and who are likely to stay there longer than would be practical with battery power alone.

Fuel cells are also used for forklifts in enclosed settings where diesel motors would not be acceptable, he says. Also, cell phone towers that formerly relied on diesel generators or lead-acid batteries for backup power have been switching to fuel cells because they take less maintenance and don't require any start-up time, he added.

A company called MTI MicroFuel Cells has a fuel-cell charger for mobile devices including cell phones and iPods; it provides up to 25 hours of power. And there have been other attempts at fuel cells for mobile phones, including one several years ago by Japan's two largest mobile communications carriers.

But for computer users, "There are no fuel cell firms claming to have a laptop product," says Michelle Rush, vice president of Medis Technologies, a fuel cell maker in New York. "Most of what you see are larger products," including fuel cells for the data center.

One of Rush's firm's products could help on the mobile-computing front. It's a unit the size of a bar of soap that supplies 20 watt-hours. It's aimed at recharging the batteries of cell phones and other smaller devices, and she claims it can usually supply 20 hours of power for a smart phone or 60 hours for an MP3 player. The unit, which uses borohydride chemistry, costs $34.99, with refills going for $19.99. Under U.S. Department of Transportation rules, airline passengers are allowed to take three units with them, where they would presumably be used for handheld games on long flights.

A larger unit aimed at laptops is at least 18 months away, she said, adding that she hopes it will cost less than $100.

As for using large capacitors instead of batteries, "They have potential, but more for vehicles than portable electronics," says Deschamps. "Used in conjunction with batteries, they can send out huge bursts of power. But I don't see any commercial use in the next five years."

Slow but sure progress

While others see looming walls, SBI's Deschamps believes that every battery chemistry -- even lithium ion -- ought to be able to show a few percentage points of improvement yearly for the foreseeable future. "A lot of chemistries are available and a lot of things are still not understood at a fundamental level -- there is no model that completely describes the chemical interactions. There are only approximations."

Deschamps compares battery development to government bonds. "Growth is slow and steady, but they get there eventually -- despite any hype you hear about batteries suddenly getting better," he says.

Petersen also cautions against hype, having heard plenty. "I do think that among investors there are a lot of expectations that there will be the equivalent of Moore's Law in the battery industry, but that is not going to happen," he says. "You can only get so many electrons out of a given atom.

"Ultimately there will be no one answer," Petersen concludes. "We will end up seeing a lot of different kinds of energy storage for lots of different applications."

Next: "Lithium-ion: The next big thing for car batteries?"

Copyright © 2009 IDG Communications, Inc.

7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon