For much of its existence, Woodward Governor Co. has been building fuel nozzles and other parts for jet aircraft engines the old-fashioned way -- carefully designing them, building physical prototypes out of raw materials, conducting tests and finally creating production parts.
Typically, it took the Fort Collins, Colo., company weeks to produce workable plans for specialized new nozzle designs. Now, that time frame has been trimmed down to several hours by cutting out the steps needed to make physical prototypes.
Instead, Woodward is using powerful cloud-based supercomputers that can run complex software to quickly create and evaluate designs that can go right into production. In other words, the nozzle designs can go from creation to production 80% faster because the company no longer needs to first build models to prove the designs, a change that's projected to save the company about a half-million dollars each year.
"Woodward had some fairly robust computer workstations internally" to produce designs, but the company didn't have anything powerful enough to run large simulations, says Robert Graybill, an HPC consultant who worked with Woodward to help add on-demand supercomputer power to the company's production capabilities. Woodward's pilot project lasted 10 weeks, and additional testing will continue through October, followed by reviews of the project to determine if and how Woodward might use on-demand supercomputing in the future.
Graybill is the CEO and president of McLean, Va.-based Nimbis Services Inc., an intermediary that helps match businesses that need more computing horsepower with HPC providers that can deliver it on an as-needed, pay-as-you-go basis. (Woodward IT representatives were not available for comment.)
Dan Olds, an analyst at Gabriel Consulting Group Inc. in Beaverton, Ore., says on-demand supercomputing is an idea that's blossoming. It's particularly useful for businesses that sometimes need processing help but can't afford to buy their own full-time, on-site HPC equipment.
"And it really opens the door for other users where this isn't even on their horizon yet," Olds says. "They could do these things on their own with the modest equipment they have, but it literally could take years." Alternately, users could simplify the problems they're trying to solve so their projects could run on systems they can afford, "but that might not give them the results they need," Olds says. On-demand supercomputing helps companies avoid both those compromises without breaking their budgets.