5 tech breakthroughs: Chip-level advances that may change computing

Laser-connected chips, flexible printed circuits, memristors and more are on the horizon.

1 2 3 4 5 Page 5
Page 5 of 5

Printed circuits: Chips on the cheap

Standard semiconductor processing involves a series of intricate steps that need to be carried out in an expensive clean room that's free of electronics-destroying dust and contaminants. But Xerox is working on a cheaper and easier way to make electronics by printing circuits on a plastic sheet. The process uses equipment that might cost hundreds of thousands of dollars, not the billions needed for traditional chip-making plants like the one Intel recently broke ground for in Chandler, Ariz.

"Conventional electronics are fast, small and expensive," observes Jennifer Ernst, formerly director of business development at Xerox's PARC research lab in Palo Alto, Calif. By printing them directly on plastic, however, PARC is making electronics that are "slow, big and cheap," says Ernst, now a vice president at Thin Film Electronics.

PARC's design prints circuits directly on the base material in a process that's often only slightly more involved than printing a mailing label. It requires some special materials, like silver ink, but these devices can be printed on flexible polyethylene sheets rather than on brittle silicon. In fact, the results probably shouldn't even be called chips anymore.

By adapting a variety of printing techniques, including ink-jetting, stamping and silk screening, PARC has made amplifiers, batteries and switches for a fraction of what it costs to manufacture them the traditional way. The company recently succeeded in making a 20-bit memory and controller circuit this way, and will start selling it next year. It's a drop in the digital bucket compared with megabit flash and DRAM chips, but it's a start.

Another interesting printed-circuit project is the blast detection sensor tape that PARC is developing for the U.S. Defense Advanced Research Projects Agency (DARPA). It's made by printing circuits on a flexible tape that can be pressed onto a soldier's helmet. With a flexible film battery on the back, the sensors measure the pressure (up to 100 psi), acceleration (up to 1,000 Gs), sound levels (up to 175 decibels) and light (up to 400 lux) experienced in battlefield conditions.

flexible tape with sensors for soldiers
PARC's flexible tape contains sensors to measure the pressure, noise and light encountered by a soldier in the field.

After a week on the front line, the soldier tears the tape off the helmet and sends it to a lab, where the data is downloaded and analyzed so that doctors can see if the soldier is in danger of a debilitating brain injury. "It replaces a $7 sensor, costs less than $1 and performs just as well," says Ernst.

On the downside, printed circuits will likely never catch up to silicon in terms of speed or the ability to put billions of transistors on something the size of a fingernail. But there are lots of places where cost counts for more than speed. As early as 2012, printed devices should start showing up in toys and games that incorporate rudimentary computing, like synthetic voices, as well as in car seat sensors for controlling the deployment of air bags in an accident. (Printed circuits are slow compared to traditional silicon electronics, but still fast enough to for air bag deployment.)

flexible display screen
This display was made at PARC by printing organic semiconductors onto a flexible plastic sheet, making it much cheaper than traditional screens.

Further out -- around 2015, Ernst estimates -- printed circuits could end up in some very interesting places, such as flexible e-book readers that can be rolled up when not in use or clothing made of a solar-cell fabric that can charge a music player or cell phone. Market analysis firm IDTechEx forecasts that sales of these flexible printed circuits will grow from $1 billion in 2010 to $45 billion in 2016 and show up in a variety of devices.

IBM's Guha also sees a bright future for printed circuits. "Anytime you remove a clean room from making electronics, it becomes much cheaper," he says. "Cheap and dirty is good enough for many uses, provided that the circuits can be made with acceptable quality."

Next: 5 more tech breakthroughs: Innovations in access, power and control

Brian Nadel is a frequent contributor to Computerworld and the former editor in chief of Mobile Computing & Communications magazine.

Copyright © 2011 IDG Communications, Inc.

1 2 3 4 5 Page 5
Page 5 of 5
7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon