Car tech: Electric vehicles get an IT assist

Tech is driving the infrastructure needed to charge these cars and to optimize power from the grid

1 2 3 4 5 Page 4
Page 4 of 5

Tinskey says it will be easier to analyze EV data in terms of knowing where the electrons are coming from (pulling data from U.S.-based power companies) and where that power is going (by analyzing data from charging stations). Ford has already analyzed much of this data and has announced the cities in which it plans to deploy test cars for the upcoming Ford Focus EV, including Houston, Detroit and New York. Tinskey says Ford analyzed data such as power availability, driving habits and even climate conditions.

Mike Kuss is an engineer at the National Renewable Energy Laboratory and is a member of the Electric Vehicle Grid-Integration Team, a research group within the Department of Energy that works with public and private entities, including automakers. He says EV energy management is more than possible. His team currently tests EV trucks on a regular basis in Colorado to learn more about their electricity needs and how IT can be involved in adjusting routes to meet demand. For example, his team has looked at how fleet vehicle needs change when a route involves a lot of idling and driving in stop-and-go traffic.

Nissan's charging timers
Leaf drivers can preset the time to begin or end charging to take advantage of lower electricity rates. Photo courtesy of Nissan.

"We actually watch the vehicles in real time; we can see how driving up a hill affects the drop in battery pack and energy remaining," Kuss says. "Based on how people actually drive, for thousands of people, we see that people are actually not using all the battery power. Every day of your life, you might not drive more than 50 miles; you use your car only occasionally for longer vacations and longer drives."

Kuss says owning a second car also dramatically impacts EV usage patterns. Someone might use an EV only for commuting, for example.

The data from these tests will be used to evaluate and plan how energy is used in cities, how much is available and what kinds of energy are used, including renewable power sources.

Creating a network operation center for EVs

Once an EV infrastructure was in place, it would be possible to have a network operations center (NOC) for electric cars, starting in major cities like San Francisco, which has already embraced an early infrastructure. Gartner's Koslowski says it may well take government involvement for this to happen, first to build charging stations, then to link them into a NOC that can monitor them all.

A NOC would help tie the actual energy needs of EV drivers to the existing power-generation supply in a city and could help planners map out longer-term energy needs as EV use becomes more common.

"A network operations center would mostly benefit electric utilities," says Tinskey. "So we'd expect that the utilities would be the catalyst if such a system were proposed." But because utilities are focused locally, expanding regional NOCs into a national phenomenon would be "a bit more of a challenge," he says.

A NOC for electric vehicles may prove critical, Koslowski says. He expects that EVs will account for up to 7% of all cars on the road by 2020, and that that percentage will be much higher by 2030. That means their impact on the grid will be much more substantial, and cities will need to know more about where the cars are driving, how to balance the power load, how to distribute charging stations and how to make sure charging is always available.

Koslowski says there is a great opportunity for IT to build the infrastructure, and especially the NOC concept, right from the start. A city with a NOC might be able to feed data to a driver about where to park and charge, or send alerts to drivers as the range of the car is decreasing.

1 2 3 4 5 Page 4
Page 4 of 5
7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon