Urban tech: From Masdar to Main Street?

Residents of Masdar City in the Middle East have smart appliances, use electricity from a solar power plant and get around by robotaxi. When will you do the same?

1 2 3 4 Page 2
Page 2 of 4

Unlike in Masdar -- a newly constructed metropolis where a smart grid can be implemented by fiat -- adoption of smart appliances in the U.S. likely faces a tough road, says Bob Gohn, an analyst at Pike Research. "There are a number of pieces of the puzzle that have to come together before smart appliances make sense from an energy perspective," he says -- standards need to be approved, utilities need to create tiered pricing plans, and smart meter technology needs to evolve.

The big hurdle, he says, is that a smart appliance has to integrate into a home's smart grid, called a home area network (HAN). The ZigBee standard ran into a roadblock in 2009, says Gohn, because the first iterations used a proprietary protocol, not the more standard TCP/IP.

Lately, Gohn says, ZigBee has started to adhere to standards like those being developed by the National Institute of Standards and Technology that govern smart grid device interoperability and power use. The Smart Energy Profile 2.0, a set of TCP/IP-compliant standards developed by ZigBee for controlling and monitoring water and energy use in the home, is nearing approval, but Gohn says compatible devices won't be available until 2013.

Another factor holding back the adoption of smart appliances and smart grids is what Gohn and other industry watchers call the "Bakersfield effect" -- distrust of smart meters by consumers and consumer advocates. In 2009, the California utility Pacific Gas and Electric (PG&E) conducted a pilot test of smart meters in Bakersfield, Calif., during which a perfect storm of rate increases, record temperatures and other factors caused utility bills to go way up, not down. As a result, state legislators blocked future smart grid deployments temporarily, although some California cities including San Francisco are now starting to deploy them.

Ironically, says Gohn, later analysis showed that the smart meters did track power usage more effectively. The problem, he explains, is that the new meters are extremely accurate. Older meters tend to fudge how much energy a home is using, to the advantage of the homeowner. But replacing them is better for the environment, because they more accurately reflect your energy usage and can show you where to make adjustments to reduce your energy consumption (for example, by suggesting that you turn down the heat at night). And if you do make such adjustments, they could ultimately lower your energy costs, even if your costs go up initially.

Eventually homeowners and municipalities will see the value of smart meters, says Gohn. He predicts that smart appliances will become popular by 2014, at which point adoption rates will begin to grow by 40% to 50% per year.

Personal, autonomously driven rapid transport

In late June 2011, the state of Nevada passed a law that would allow driverless cars on its roads, pending the Department of Motor Vehicles' development of regulations governing how the cars should operate on public highways. Those regulations were approved in February.

California looks to be headed in the same direction: The state senate in May approved a bill that would establish standards governing autonomously operated vehicles. Other states, including Arizona, Hawaii, Florida and Oklahoma, are considering similar legislation, according to the Los Angeles Times.

Already, Google has put specially outfitted self-driving Toyota Prius models through test drives that covered 140,000 miles in northern California. A driver was always on hand to take over during the test drives, and there was only one minor fender-bender during the pilot, and it was caused by human error. Autonomous driving could cut the number of accidents in half, says Sebastian Thrun, a Google engineer.

Of course, having one car drive you to work is one thing. In Masdar City, thousands of people ride in autonomous cabs that run on electric power and read markers on the road for navigation. There is no need for remote charging stations, because the cabs power up at a car terminal while waiting for people to load. There are now 10 taxis in operation, carrying about 25,000 passengers per month, according to 2GetThere, the company that developed the Masdar City robotaxis.

Masdar City robotaxis
Robotaxis transport about 25,000 people per month in Masdar City. There are currently 10 vehicles in the fleet. Credit: 2GetThere.

There have been no reported accidents since the Masdar City taxis launched in December 2010, according to 2GetThere spokesman Robbert Lohmann, who says autonomous cars for public transit make sense in Masdar City because the road infrastructure is dedicated to the driverless cabs. "The chances of two vehicles coming into contact with each other are extremely remote," he says. "The predictable behavior of automated systems ensures that the random character of accidents as we experience them with manually driven vehicles, such as personal cars or trains, will be avoided."

What about on U.S. roads at highway speeds? Marcial Hernandez, a senior engineer at automaker Volkswagen, says the sensor technology needed for autonomous cars on highways is already available. Many cars can sense when another vehicle passes or automatically slow down to maintain a proper distance from the vehicle ahead of you on the highway (thanks to a technology called adaptive cruise control). A few models, like the Infiniti G, can nudge you back into a lane when your car gets too close to the shoulder.

1 2 3 4 Page 2
Page 2 of 4
Shop Tech Products at Amazon