Smart buildings get smarter

Thanks to integrated architectures, IT-driven building designs are minimizing energy consumption while optimizing operations.

1 2 3 4 Page 3
Page 3 of 4

Both energy-efficiency optimization and fault detection and diagnostics are based on rule sets that are typically customized for each project. The rules determine whether equipment is operating efficiently; if there's a problem, the system performs tests to find the cause.

The SFPUC's rules, which were developed using a spreadsheet-based energy analysis tool called eQuest, also calculate the increased cost associated with running a system out of specification. When a critical event occurs, the IBMS can automatically generate a work order in the facilities management system, says Sinopoli.

Microsoft's engineers created 195 rules and used SQL Server's Stream Insight event engine, along with analytics software from Iconics, to perform calculations that identify faults and monitor efficiency. "We not only find the faults, but monetize them," says Smith. For example, variable air volume (VAV) boxes control airflow in the air conditioning system. If one of the 20,000 VAV units isn't properly calibrated, the system alerts the facilities group before any employees call to say they're uncomfortable. The rules also calculate the energy cost savings that would result from fixing the problem, allowing the facilities group to prioritize the work. "We went from walking around to figure out what's not working to figuring what's not working and costing the most. That saved us over $1 million right there," Smith says.

The system also has allowed Microsoft to start moving toward a just-in-time maintenance and tuning schedule, a trend known as continuous commissioning. Following a traditional maintenance schedule, more than 26,000 filters would be changed quarterly, and each of the more than 800 building air-handling systems would be tuned in a five-year rotation. With the new system, Smith says, "we were able to go much deeper with the data and tune all [30,000] of the assets, not just the large building systems." The problem with tuning 20% of the systems each year is that, as with cars, the efficiency and performance of building systems degrade gradually over time. Now Microsoft uses analytics to replace each filter based on actual usage.

"Instead of changing them on a schedule, we change them at the right time. That's the intelligence we're talking about -- a building generating its own work orders," Smith says. And by prioritizing maintenance needs, the facilities organization can continually tune the campus. "It compresses the five-year cycle into one year for a total savings of $1 million," he adds.

The Redmond campus project, which is about 20% complete, has also allowed Microsoft to reduce its peak energy demand. "We were causing our own peak demand just by how things were occurring in the building," Smith says. Resequencing when different building systems came online smoothed out the demand curve. In the pilot phase, Microsoft has so far shaved energy costs by 6% to 10%, while the application of analytics for fault detection and diagnostics is projected to save more than $1 million annually. "Our payback on this will be about 18 months," he says. That payback period is shorter than it would be in other states, however, because Washington has the country's third lowest electric power rates.

1 2 3 4 Page 3
Page 3 of 4
  
Shop Tech Products at Amazon