Ford also uses the technology to build "bridging parts" that can be included in nonproduction vehicle assembly until conventionally manufactured parts are available, and as a way to manufacture parts made out of more than one material in a single step. For example, a handle that includes both hard plastic and soft rubber components would usually require a two-step process when using conventional manufacturing techniques.
Like Lockheed Martin, Ford is looking at using 3D printing to produce some replacement parts on demand. "Do we just keep the electronic data for that part and produce it as needed? You'll see a lot more of that in the future," Sears says. And he hopes to find low-volume applications where his team can do 3D-printer-optimized designs that reduce weight and cost of the final product.
But, he adds, the materials are still expensive, they still have a way to go to be able to mimic the material properties of today's production parts, and engineers aren't used to designing for additive manufacturing. "It could take years for people to become proficient and do the difficult geometry," he says.
But the accessibility of low-cost desktop 3D printers on which engineers can experiment, coupled with new engineering recruits fresh out of school who are already familiar with 3D design and build concepts, is helping to accelerate that process. "Our newest generation of engineers and designers has grown up thinking in three dimensions," says Betza. By providing access to desktop 3D printers, Gardner adds, Lockheed Martin is able to "bring this capability forward to hone skills and build confidence."
At Ford, Sears is content for now to make parts that are more usable in prototype applications. Most of that activity is self-contained, with little IT involvement. "But in the future there will be a lot more involvement if models lend themselves to downloading a data file and printing it on your own 3D printer."
Airbus is also using 3D printed thermoplastics to create tools to aid in assembly, such as drilling guides, jigs and a simple hand tool to install hydraulic pipes into an aircraft. "Tooling on the manufacturing floor is currently one the largest growth areas" for fused deposition modeling, says Cobb.
IT end game
So what does it all mean for IT? As 3D printing becomes a disruptive technology in design and manufacturing throughout the supply chain, IT will be a key enabler. "The CIO will be absolutely critical to the success of advanced manufacturing in the enterprise," Betza says.
"When you go from prototype printing to printing of high-value, critical items, the IT environment must be more robust in terms of security and the quality of systems," says DeFelice. "You're going to see complex integrations of hardware and software that interface with ERP, with quality systems and logistics. There are a host of new problems that need to be solved by IT that haven't been looked at yet."
CIOs should respond by embracing engineering and manufacturing as a core part of their mission -- and starting a dialog, says Betzer. "IT needs to be an intimate partner with those two disciplines for the enterprise to be successful."
This article, 3D printing makes its move into production, was originally published at Computerworld.com.