Emerging Tech

3D printing makes its move into production

IT needs to get ready

Emerging Tech

Show More
1 2 3 4 Page 3
Page 3 of 4

The traditional material used for these types of prosthetic implants, titanium, is stiff and can wear down adjacent bone over time, leading to the need to have joints reworked after a number of years. The 3D-printed, thermoplastic prosthesis is more compatible. "You get a perfect fit, lower unit cost and reduced time in the operating room," says Oxford Performance Management (OPM) CEO Scott DeFelice.

The company recently manufactured one of the largest cranial implants ever used. "It looks like a football helmet," DeFelice says. Building the prosthesis out of titanium would have required assembling it from three or four pieces and fusing those together, but with 3D printing OPM could manufacture it as a single part.

That quality also makes 3D printing attractive in the aerospace industry, where weight matters. "If you have a complex assembly you can reduce the parts count dramatically," says Carson. And because it can add material only where needed for structural support, Airbus has been able to come up with what Carson calls "bionic" shapes.

3D printing processes have also helped Lockheed Martin develop unique stainless steel alloys using nano-particle additives, says Gardner. The 3D printing process, which involves melting successive layers of powdered metal, creates a rapidly cooling "weld puddle" that locks in micro-structures that wouldn't be possible using conventional foundry techniques. "This has implications for the entire alloy industry," he says. It may make ships more resistant to corrosion, bridges more tolerant of damage, skyscrapers taller and safer, and pressure vessels better able to perform, as well as improving the thermal and electrical performance of spacecraft, according to Gardner.

The speed barrier

With speed requirements measured in minutes rather than hours, and extreme high-volume requirements, Ford Motor Co. can't use 3D printing to manufacture production parts. But as 3D printer materials have improved in performance and durability, Ford has increased its use in several areas. For example, it uses 3D printing processes to make the tooling used to create production parts.

"Tooling is very expensive, so we're finding a nice benefit from that," says Harold Sears, 3D printing technical expert. Ford also uses 3D printers to build intake manifold prototypes that can be tested for up to 100,000-mile cycles. A 3D-printed manifold prototype costs $3,000 to build over four days -- versus $500,000 and four months using traditional manufacturing methods.

Ford used a 3D printing process to create a sand-cast mold used to produce cast-metal parts, including this one for Ford's 2.7-liter EcoBoost V6 cylinder block core, used in the 2015 F-150 truck. Source: Ford.
1 2 3 4 Page 3
Page 3 of 4
It’s time to break the ChatGPT habit
Shop Tech Products at Amazon