Explained: The ABCs of the Internet of Things

What it is, how it works and why it may not succeed

1 2 3 Page 2
Page 2 of 3

Do you want your bathroom scale to talk to your refrigerator?

The IoT opens up a lot of opportunity for creative app writers. Let's start with a smart refrigerator. You buy your groceries online and have them delivered to your home. It has now become advantageous for grocers and food product makers to add RFID tags to their products. The refrigerator knows what is inside via weight-sensitive shelves and expiration dates. It can also help you keep a grocery list, automate orders and provide nutritional information.

For instance, let's say you decide to take a pint of Ben and Jerry's ice cream out of the freezer. When that happens, a connected wireless speaker announces, loudly: "Please reconsider this selection. As requested, here is your most recent weight and BMI." The wireless speaker is reporting data collected from your bathroom scale. The scale was never designed to communicate with a refrigerator, but an app writer made it so by linking data from the scale and fridge. This scale-fridge-speaker combination may seem silly, but here's the point: In the IoT, app writers now have the ability to connect seemingly disparate things to create new types of functionality.

How do IoT devices communicate?

An IoT device will have a radio that can send and receive wireless communications. IoT wireless protocols are designed to accomplish some basic services: Operate on low power, use low bandwidth and work on a mesh network. Some work on the 2.4 GHz band, which is also used by Wi-Fi and Bluetooth, and the sub-GHz range. The sub-GHz frequencies, including 868 and 915 MHz bands, may have the advantage of less interference.

Why is low power and low bandwidth important in IoT?

Some IoT devices will get power from electrical systems, but many, such as door locks and standalone sensors, will use batteries. These devices send and receive small amounts of information intermittently or periodically. Consequently, the battery life of an IoT device can range from 1.5 years to a decade, if the battery lasts that long. One IoT maker, Insteon, uses both radio and powerline communication, which can send data over existing electrical wiring as well as via a radio, which it says will offer an increased measure of reliability.

What is a mesh network?

Devices in a mesh network connect directly with one another, and pass signals like runners in a relay race. It is the opposite of a centralized network. The transmission range of an IoT device on a mesh network is anywhere from 30 feet to more than 300 feet.

Since mesh network devices can hand-off signals, they have an ability to connect thousands of sensors over a wide area, such as a city, and operate in concert. Mesh networks have the added ability of working around the failure of any individual device. Wireless mesh IoT protocols include the Z-Wave Alliance, the Zigbee Alliance, and Insteon, which also has an alliance of vendors. These protocols aren't directly interoperable, although there are workarounds via hubs (more on this later).

ZigBee is an open protocol, but its critics say that not all of its implementations are necessarily the same. ZigBee runs a certification to ensure standard deployments. Insteon and Z-Wave are proprietary, which may ensure standardization of implementation.

What's the best wireless network for the IoT?

Today, no wireless technology has a dominant market share in IoT applications. Nick Jones, an analyst at research firm Gartner, said more than 10 IoT wireless technologies will "get significant traction" in IoT applications. These wireless technologies include cellular, satellites and new communications such as Weightless, which uses "white space," or unoccupied TV channels. More importantly, no one wireless technology will meet every need and circumstance. A connected car, for instance, will use a cellular network to contact your home network.

Will I need a gateway or hub in the IoT?

A gateway, bridge or hub provides a connection point between your home network and other devices. The hub works with your home router and provides communications to the machines, devices and sensors that are part of your IoT universe. You will want, by default, your Zigbee smart meter to communicate with your Z-Wave or Insteon thermostat. This will also be true for the washing machine that is connected to a smart metering system and starts a wash only when electric rates are at their lowest point. These connections will be established through hubs that support multiple wireless technologies.

SmartThings, for instance, makes a hub that supports both Zigbee and Z-Wave, as well as a platform to build connecting applications. Eventually, these wireless technologies may be included in home routers, set-top boxes from your cable companies, or even devices such as a Google Chromecast.

Won't Bluetooth win in the end?

Bluetooth Low Energy was originally aimed at wearable technology, not the broad IoT market. But in early 2014, CSR, a semiconductor maker, announced a mesh network for Bluetooth, meaning it could now connect to thousands of things.

Bluetooth's ubiquity in mobile devices means that a Bluetooth mesh network as a broad IoT platform will have some advantages. Because Bluetooth is already a feature on smartphones, a smartphone could act as a management hub inside a home. But it's not perfect. A hub will be needed if someone wants to connect with the home network remotely, such as from work.

Do the big consumer product vendors really want an Internet of Things?

Skeptics say it's unlikely that all the big vendors will embrace open standards. A more likely outcome for the IoT are technological islands defined by proprietary data interchanges.

Without open standards or open communication protocols, devices on the network won't be able to share data and work in concert. Will Apple develop products that can connect with Samsung products? Will Bosch products communicate with those from Samsung or Sears? Maybe not.

Consumers will be frustrated and will be told that they need to buy into a particular vendor's product partner network to get a full IoT experience.

Can open source force the big vendors to play nice?

Open source advocates are hoping they can avert a fracturing of the IoT. The Linux Foundation, a nonprofit consortium, created the AllSeen Aliance and released a code stack in late 2013 that can be used by any electronics or appliance maker to connect to another product. The alliance hopes that the sheer weight of adoption of this stack, called AllJoyn, will help to push the IoT toward open standards. AllJoyn is agnostic about wireless protocols, and support for Bluetooth LE, ZigBee and Z-Wave can be added easily by the community.

Will the IoT destroy what little privacy you have left?

Privacy advocates are plenty worried about the IoT's impact on consumers. Part of this is due to the arrival of IPv6 addresses, the next generation Internet protocol. It replaces IPv4, which assigned 32-bit addresses, with a total limit of 4.3 billion; IPv6 is 128-bit, and allows for 340 trillion trillion trillion addresses or 340,000,000,000,000,000,000,000,000,000,000,000,000. This makes it possible to assign a unique identifier to anything that's part of the IoT (although not everything needs to be IP addressable, such as light switches). This may enable deep insights into a home. Smart metering systems, for instance, will be able to track individual appliance use.

1 2 3 Page 2
Page 2 of 3
  
Shop Tech Products at Amazon