A great feature with this printer is that it has onboard flash memory, which means once the pattern has been sent to the printer, you can disconnect your computer from it and it will complete the printing job. While some other printers do not have this feature, others have SD card slots or even Internet connectivity and LCD displays that enable a user to download the STL files and images -- no computer required.
Many 3D printers allow users to adjust how many layers make up the outer shell and how much filler is used inside. It can range from solid and loose to hollow with bigger gaps, depending on how much filler is used. (Thermoplastic filler adds solidity to models with thinner or more fragile structures.) Each setting affects the print time.
The less material used, the faster an item will print. For example, when I chose the "hollow" setting for a Porsche 911 model, the print time dropped from three to about two hours. But not all models can withstand the hollow setting and need more filler for support.
You can also adjust the print speed by choosing "normal," "fast" or "fine." The slower you print, the better quality the outcome.
Watching it work
While 3D printing will change the world of manufacturing, both in the factory and the home, the experience of actually printing an object can be a lot like watching paint dry. A small model, like my Porsche 911, takes more than three hours to print, wafer-thin layer by wafer-thin layer.
To be sure, the first two or three times the 3D printer begins melting and extruding its spool of weed-whacker string across the platform, you're glued to the systematic movements of the robotic mechanisms as they glide back and forth to construct a toy or model.
On my first print job, my cubicle was packed with co-workers, all brimming with excitement at finally getting a real-world glimpse into what 3D printing was really all about.
By the fourth job, no one even bothered pausing at my desk, and I barely glanced over at the printer as it exuded technology inches from my shoulder.
Finishing up
Printing an object is easy. Cutting away the scaffolding material is arduous labor most of the time.
The Afinia printer comes with an array of tools (an X-Acto knife, snipping pliers, tweezers and a sharpened putty knife) to help you cut and pry away the scaffolding material that is used to hold an object in place as it's being printed. Without the scaffolding, many objects would droop where their walls are thin. You also get a pair of workman's gloves because you're dealing with objects printed on a heated platform.
The honeycomb-like structures that makeup the inner and outer scaffolding can be thick or thin, complex or simple depending on the object's size and the amount of detail it requires.
The first object I printed was the Porsche 911 model car. The car measured 1.75 x 3.83 x 1.25 in. It had an elaborate honeycomb of support structures on the sides and the bottom that took me more than 20 minutes to cut away using the X-Acto blades and wire snips. There were several moments when I came close to slicing my fingers open with an errant swipe of the blade.
When I printed an iPhone 5 cover with moving gears on its back, I spent the better part of an hour and a half trying to remove the bits and pieces of scaffolding material intricately woven into every nook of the cover. By the time I was done, I'd snapped off four of the seven gears and was able to get only one gear to actually turn.