Skip the navigation

IBM devises software for its experimental brain-like SyNAPSE chips

IBM has introduced a programming model for its state-of-the-art sensor processors

By Joab Jackson
August 8, 2013 07:03 AM ET

IDG News Service - Following up on work commissioned by the U.S. Defense Advanced Research Projects Agency (DARPA), IBM has developed a programming paradigm, and associated simulator and basic software library, for its experimental SyNAPSE processor.

The work suggests the processors could be used for extremely low-power yet computationally powerful sensor systems.

"Our end goal is to create a brain in a box," said Dharmendra Modha, and IBM Research senior manager who is the principal investigator for the project. With this technology, systems could one day be built that would "mimic the brain's ability for perception, action and cognition," he said.

The work is a continuation of a DARPA project to design a system that replicates the way a human processes information.

DARPA's original goal for the Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) project was to design computational devices comprised of billions of tiny processor cores packed into the volume of a two-liter bottle that used less energy than a light bulb.

At The International Joint Conference on Neural Networks this week in Dallas, IBM is demonstrating the third phase of the project, which thus far DARPA has funded with approximately US$53 million. IBM is working with Cornell University and iniLabs, and has collaborated with six other universities and a number of government supercomputing facilities as well.

The chips represent a radical break in design from today's von Neumann architecture of computing, in that computations are quickly made in a serial fashion. In contrast, this model works with multiple low-power processor cores working in parallel.

This chip architecture replicates how the human brain works, in that each "neurosynaptic core" has its own memory ("synapses"), a processor ("neuron"), and communication conduit ("axons"), which all operate together in an event-driven fashion, according to IBM. By working together, these cores could provide nuanced pattern recognition and other sensing capabilities, in much the same way a brain does.

IBM is unveiling a software ecosystem at the conference that can be used with these processors.

In particular, IBM is unveiling a simulator that can run a virtual network of neurosynaptic cores for testing and research purposes. IBM is also introducing a neuron model to represent how the processor core operates, or how it senses, remembers and acts upon a variety of input.

The company is also showing off a programming model based on reusable and stackable building blocks, called corelets. The corelet acts as the atomic unit of this neural computing model, in which inner workings of a corelet are hidden and the programmer knows only of its inputs and outputs. "The programmer only sees wires going in and wires coming out," Modha said.

Reprinted with permission from IDG.net. Story copyright 2014 International Data Group. All rights reserved.
Our Commenting Policies