Skip the navigation

Harvard stores 70 billion books using DNA

August 20, 2012 04:40 PM ET

The Japanese universities said they successfully encoded "e= mc2 1905!" -- Einstein's theory of relativity and the year he enunciated it -- on common soil bacteria Bacillius subtilis.

The Harvard researchers used the four DNA nucleobases - adenine (A), cytosine (C), guanine (G) and thymine (T) - as binary markers. The A and C stand for the digit 0 and the T and G represent the digit 1, according to Kosuri.

And where some experimental media -- like quantum holography -- require temperatures approaching absolute zero (273 degrees Celsius) and tremendous energy, DNA is stable at room temperature, the researchers noted. "You can drop it wherever you want, in the desert or your backyard, and it will be there 400,000 years later," Church said.

Unlike earlier researchers, Church said his team was able to use commercial DNA microchips to create standalone DNA.

"We purposefully avoided living cells," Church said. "In an organism, your message is a tiny fraction of the whole cell, so there's a lot of wasted space. But more importantly, almost as soon as a DNA goes into a cell, if that DNA doesn't earn its keep, if it isn't evolutionarily advantageous, the cell will start mutating it, and eventually the cell will completely delete it."

In another departure from earlier research, the team rejected so-called "shotgun sequencing," which reassembles long DNA sequences by identifying overlaps in short strands.

Instead, the Harvard team took their cue from information technology, and encoded the book in 96-bit data blocks, each with a 19-bit address to guide reassembly. Including jpeg images and HTML formatting, the code for the book required 54,898 of these data blocks, each a unique DNA sequence.

"We wanted to illustrate how the modern world is really full of zeroes and ones, not As through Zs alone," Kosuri said.

Lucas Mearian covers storage, disaster recovery and business continuity, financial services infrastructure and health care IT for Computerworld. Follow Lucas on Twitter at Twitter@lucasmearian, or subscribe to Lucas's RSS feed Mearian RSS. His e-mail address is lmearian@computerworld.com.

Read more about Emerging Technologies in Computerworld's Emerging Technologies Topic Center.



Our Commenting Policies
Internet of Things: Get the latest!
Internet of Things

Our new bimonthly Internet of Things newsletter helps you keep pace with the rapidly evolving technologies, trends and developments related to the IoT. Subscribe now and stay up to date!