Skip the navigation

MIT researchers promise an Internet that's 100x faster and cheaper

Souping up the Internet for heavy-weight apps could 'transform the industry'

July 1, 2010 06:00 AM ET

Computerworld - MIT researchers have developed technology that they say not only will make the Internet 100 to 1,000 times faster, but also could make high-speed data access a lot cheaper.

The trick to such dramatic performance gains lies within routers that direct traffic on the Internet, according to Vincent Chan, an electrical engineering and computer science professor at MIT, who led the research team. Chan told Computerworld that replacing electrical signals inside the routers with faster optical signals would make the Internet 100, if not 1,000 times faster, while also reducing the amount of energy it consumes.

What would the Internet be like if it ran that much faster?

Today, a user who has a hard time downloading a 100MB file would be able to easily send a 10GB file, with the Internet running 100 times faster, according to Chan.

"We're looking to the future when computer processors are much more powerful and we have much bigger downloads and applications," Chan said. "When we get more powerful processors, people will be clamoring for more speed. The question is, can these new processors and their powerful applications be supported over the Internet? Everyone will be using more high-rate applications, like 3D, interactive games, high-speed financial trading."

And when that happens, Chan said users of those large applications will run into choke points on the Internet. And that could happen as soon as 16-core processors hit the market, if not sooner. "I think the Internet will not be fast enough within three to five years," he added.

The answer, he said, is optical fibers, which carry light pulses.

Optical fibers are used widely on the Internet, spanning great distances and even continents. While they transmit information more efficiently than electrical signals, optical signals are complicated to deal with. A router, for instance, has problems handling optical signals coming from different directions at the same time. To get around that problem, routers on the Internet generally take in optical signals and convert them to electrical signals so they can be stored in memory until they can be processed, said MIT's report. After that, the electrical signals are converted back to optical signals so they can be sent back out.

That process eats up chunks of time and energy. Chan and his team have developed technology that would eliminate the need for such conversions.

Chan's architecture, which is called "flow switching," establishes a dedicated path across the network between locations that exchange large volumes of data -- from Silicon Valley to Boston, for instance. MIT explained that routers along that path would only accept signals coming from one direction and send them off in only one direction. Since the optical signals aren't coming from different directions, there's no need to convert them to electrical signals for storage in memory.

"If this can truly jack up Internet data speeds by 100 times, that would have a huge impact on the usability of the Net," said Dan Olds, an analyst at Gabriel Consulting Group Inc. "We'd see the era of 3D computing and fully immersive Internet experiences come much sooner.... If this turns out to be practical, it could be a very big step forward."

Dealing with network bottlenecks would be a huge accomplishment, said Rob Enderle, principal analyst at Enderle Group.



Our Commenting Policies
Internet of Things: Get the latest!
Internet of Things

Our new bimonthly Internet of Things newsletter helps you keep pace with the rapidly evolving technologies, trends and developments related to the IoT. Subscribe now and stay up to date!