Skip the navigation

Reverse-Engineering

By Mathew Schwartz
November 12, 2001 12:00 PM ET

Computerworld - Whether it's rebuilding a car engine or diagramming a sentence, people can learn about many things simply by taking them apart and putting them back together again. That, in a nutshell, is the concept behind reverse-engineering—breaking something down in order to understand it, build a copy or improve it.

A process that was originally applied only to hardware, reverse-engineering is now applied to software, databases and even human DNA. Reverse-engineering is especially important with computer hardware and software. Programs are written in a language, say C++ or Java, that's understandable by other programmers. But to run on a computer, they have to be translated by another program, called a compiler, into the ones and zeros of machine language. Compiled code is incomprehensible to most programmers, but there are ways to convert machine code back to a more human-friendly format, including a software tool called a decompiler.

Reverse-engineering is used for many purposes: as a learning tool; as a way to make new, compatible products that are cheaper than what's currently on the market; for making software interoperate more effectively or to bridge data between different operating systems or databases; and to uncover the undocumented features of commercial products.

A famous example of reverse-engineering involves San Jose-based Phoenix Technologies Ltd., which in the mid-1980s wanted to produce a BIOS for PCs that would be compatible with the IBM PC's proprietary BIOS. (A BIOS is a program stored in firmware that's run when a PC starts up; see Technology QuickStudy, June 25.)

To protect against charges of having simply (and illegally) copied IBM's BIOS, Phoenix reverse-engineered it using what's called a "clean room," or "Chinese wall," approach. First, a team of engineers studied the IBM BIOS—about 8KB of code—and described everything it did as completely as possible without using or referencing any actual code. Then Phoenix brought in a second team of programmers who had no prior knowledge of the IBM BIOS and had never seen its code. Working only from the first team's functional specifications, the second team wrote a new BIOS that operated as specified.

The resulting Phoenix BIOS was different from the IBM code, but for all intents and purposes, it operated identically. Using the clean-room approach, even if some sections of code did happen to be identical, there was no copyright infringement. Phoenix began selling its BIOS to companies that then used it to create the first IBM-compatible PCs.

Other companies, such as Cyrix Corp. and Advanced Micro Devices Inc., have successfully reverse-engineered Intel Corp. microprocessors to make less-expensive Intel-compatible chips.



Our Commenting Policies