sponsored

Accelerate Time to Value with Healthcare Discovery Analytics

doctor ipad

Electronic Medical Record (EMR) adoption, big data, and other technology trends are generating large volumes and varieties of data for analysis. But data is not the limiting factor in transforming the business and practice of healthcare—managing the data is.

RELATED TOPICS

Electronic Medical Record (EMR) adoption, big data, and other technology trends are generating large volumes and varieties of data for analysis. But data is not the limiting factor in transforming the business and practice of healthcare—managing the data is. If healthcare organizations want to use these technologies to create opportunities to differentiate, they must invest in the data itself.

When this doesn’t happen, data warehouse and analytics project participants typically tackle one use case at a time. If an  administrator wants a better understanding of admission trends, for example, they need to know how many patients were admitted the previous week. As a separate use case, this team knows that care coordination teams want to improve care for Congestive Heart Failure (CHF) patients. They want to incorporate data into the warehouse that allows the care coordination teams to look at CHF patients and learn how many CHF patients were admitted the previous week. As a third use case, the team building a data warehouse has a request for identifying referring providers so they can incorporate a referring provider data field in the data model and data warehouse.

Here’s the problem with this approach: analytic use cases are dynamic in nature. When a researcher or an administrator is neck deep in data, they start out by testing their hypothesis – starting with a known question (or many) which then rapidly compounds and evolves. This rapid evolution is what drives innovation, identifies new cures, and – ultimately -- is most likely to transform healthcare. This type of insight relies on data: seamless, transparent, and uninterrupted access to data. Insights don’t want to wait for IT to connect new data sources or vet data quality. At Informatica, we refer to this type of analytics as discovery analytics. Discovery analytics enables clinicians and business users to quickly perform iterative hypothesis testing on integrated data from internal and external sources.

Using this approach, users with proper security profiles can quickly move from asking these pre-defined insulated questions to asking complex integrated questions, such as “What was the total cost of care for Medicaid patients admitted last week in zip code 98107 with CHF who had also been admitted in the last 30 days? Of these, who saw their primary care provider post discharge and who picked up their prescriptions?” This example is illustrated below:

initial q

To experience this type of success, healthcare organizations need to focus on data, not solely on applications such as the EMR. An application-centric (or EMR-centric) view of data provides an incomplete snapshot of the patient by limiting the view to data within each individual application. To improve patient outcomes and make insightful decisions based on dynamic analytic use cases, organizations must have a view of patient information across applications and locations, including (but not limited to) claims processing, registration, physician offices, labs, and inpatient beds. Organizations can only achieve this data-centric view by releasing data from its application silos, investing in its connectedness and quality, and making it available for self-service discovery analytics.

In a traditional analytics environment, the serial process of getting access to data prevents rapid analysis that responds to changing needs. Often, users have access to data either within the application or through a business intelligence tool. In between, the data resides in a vacuum where it is extracted, transformed, and served up to analytics users based on pre-determined requirements. However, if analyst identifies a data quality issue, needs more data, or wants different data, they must go back to IT and start the process from the beginning. This is slow, costly, and frustrating process for end users.

A better way to accelerate analysis is to connect healthcare applications with a defined industry data model that sits on a proven data management platform. This approach complements existing applications, accelerates time to value, and makes discovery analytics a reality.

Learn more about this type of approach and Informatica healthcare solutions here.

RELATED TOPICS
5 free apps that add cool Windows 7 features to Windows 10
View Comments
Join the discussion
Be the first to comment on this article. Our Commenting Policies